Movatterモバイル変換


[0]ホーム

URL:


GWlasso: Geographically Weighted Lasso

Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions. These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.

Version:1.0.2
Depends:R (≥ 3.5.0)
Imports:dplyr,ggplot2,ggside,glmnet,GWmodel,lifecycle,magrittr, methods,progress,rlang,sf,tidyr
Suggests:knitr,maps,rmarkdown
Published:2025-09-26
DOI:10.32614/CRAN.package.GWlasso
Author:Matthieu MulotORCID iD [aut, cre, cph], Sophie ErbORCID iD [aut]
Maintainer:Matthieu Mulot <matthieu.mulot at gmail.com>
BugReports:https://github.com/nibortolum/GWlasso/issues
License:MIT + fileLICENSE
URL:https://github.com/nibortolum/GWlasso,https://nibortolum.github.io/GWlasso/
NeedsCompilation:no
Citation:GWlasso citation info
Materials:README,NEWS
CRAN checks:GWlasso results

Documentation:

Reference manual:GWlasso.html ,GWlasso.pdf
Vignettes:example_analysis (source,R code)

Downloads:

Package source: GWlasso_1.0.2.tar.gz
Windows binaries: r-devel:GWlasso_1.0.2.zip, r-release:GWlasso_1.0.2.zip, r-oldrel:GWlasso_1.0.2.zip
macOS binaries: r-release (arm64):GWlasso_1.0.2.tgz, r-oldrel (arm64):GWlasso_1.0.2.tgz, r-release (x86_64):GWlasso_1.0.2.tgz, r-oldrel (x86_64):GWlasso_1.0.2.tgz
Old sources: GWlasso archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=GWlassoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp