BMEmapping: Spatial Interpolation using Bayesian Maximum Entropy (BME)
Provides an accessible and robust implementation of core BME methodologies for spatial prediction. It enables the systematic integration of heterogeneous data sources including both hard data (precise measurements) and soft interval data (bounded or uncertain observations) while incorporating prior knowledge and supporting variogram-based spatial modeling. The BME methodology is described in Christakos (1990) <doi:10.1007/BF00890661> and Serre and Christakos (1999) <doi:10.1007/s004770050029>.
| Version: | 1.2.2 |
| Depends: | R (≥ 3.5) |
| Imports: | ggplot2,gridExtra,mvtnorm, stats, utils |
| Suggests: | knitr,rmarkdown,testthat (≥ 3.0.0) |
| Published: | 2025-08-19 |
| DOI: | 10.32614/CRAN.package.BMEmapping |
| Author: | Kinspride Duah [aut, cre, cph], Yan Sun [aut] |
| Maintainer: | Kinspride Duah <kinspride2020 at gmail.com> |
| BugReports: | https://github.com/KinsprideDuah/BMEmapping/issues |
| License: | MIT + fileLICENSE |
| URL: | https://github.com/KinsprideDuah/BMEmapping |
| NeedsCompilation: | no |
| Materials: | README,NEWS |
| CRAN checks: | BMEmapping results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=BMEmappingto link to this page.