Movatterモバイル変換


[0]ホーム

URL:


EMgaussian: Expectation-Maximization Algorithm for Multivariate Normal(Gaussian) with Missing Data

Initially designed to distribute code for estimating the Gaussian graphical model with Lasso regularization, also known as the graphical lasso (glasso), using an Expectation-Maximization (EM) algorithm based on work by Städler and Bühlmann (2012) <doi:10.1007/s11222-010-9219-7>. As a byproduct, code for estimating means and covariances (or the precision matrix) under a multivariate normal (Gaussian) distribution is also available.

Version:0.2.2
Imports:Rcpp,matrixcalc,Matrix,lavaan,glasso,glassoFast,caret
LinkingTo:Rcpp,RcppArmadillo
Suggests:testthat (≥ 3.0.0),psych,bootnet,qgraph,cglasso
Published:2025-07-24
DOI:10.32614/CRAN.package.EMgaussian
Author:Carl F. Falk [cre, aut]
Maintainer:Carl F. Falk <carl.falk at mcgill.ca>
License:GPL (≥ 3)
NeedsCompilation:yes
CRAN checks:EMgaussian results

Documentation:

Reference manual:EMgaussian.html ,EMgaussian.pdf

Downloads:

Package source: EMgaussian_0.2.2.tar.gz
Windows binaries: r-devel:EMgaussian_0.2.2.zip, r-release:EMgaussian_0.2.2.zip, r-oldrel:EMgaussian_0.2.2.zip
macOS binaries: r-release (arm64):EMgaussian_0.2.2.tgz, r-oldrel (arm64):EMgaussian_0.2.2.tgz, r-release (x86_64):EMgaussian_0.2.2.tgz, r-oldrel (x86_64):EMgaussian_0.2.2.tgz
Old sources: EMgaussian archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=EMgaussianto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp