Movatterモバイル変換


[0]ホーム

URL:


BTSPAS: Bayesian Time-Stratified Population Analysis

Provides advanced Bayesian methods to estimate abundance and run-timing from temporally-stratified Petersen mark-recapture experiments. Methods include hierarchical modelling of the capture probabilities and spline smoothing of the daily run size. Theory described in Bonner and Schwarz (2011) <doi:10.1111/j.1541-0420.2011.01599.x>.

Version:2024.11.1
Imports:actuar,coda,data.table,ggplot2,ggforce, graphics, grDevices,gridExtra,plyr,reshape2,R2jags,scales, splines, stats, utils
Suggests:R.rsp
Published:2024-10-23
DOI:10.32614/CRAN.package.BTSPAS
Author:Carl J Schwarz [aut, cre], Simon J Bonner [aut]
Maintainer:Carl J Schwarz <cschwarz.stat.sfu.ca at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/cschwarz-stat-sfu-ca/BTSPAS
NeedsCompilation:no
SystemRequirements:JAGS
Citation:BTSPAS citation info
Materials:README,NEWS
CRAN checks:BTSPAS results

Documentation:

Reference manual:BTSPAS.html ,BTSPAS.pdf
Vignettes:01 Diagonal model (source)
02 Diagonal model with multiple ages (source)
03 Non-diagonal model (source)
04 Non-diagonal with fall-back model (source)
05 Bias from incomplete sampling (source)
06 Interpolating run earlier and later (source)

Downloads:

Package source: BTSPAS_2024.11.1.tar.gz
Windows binaries: r-devel:BTSPAS_2024.11.1.zip, r-release:BTSPAS_2024.11.1.zip, r-oldrel:BTSPAS_2024.11.1.zip
macOS binaries: r-release (arm64):BTSPAS_2024.11.1.tgz, r-oldrel (arm64):BTSPAS_2024.11.1.tgz, r-release (x86_64):BTSPAS_2024.11.1.tgz, r-oldrel (x86_64):BTSPAS_2024.11.1.tgz
Old sources: BTSPAS archive

Reverse dependencies:

Reverse imports:Petersen

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BTSPASto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp