Movatterモバイル変換


[0]ホーム

URL:


scGate: Marker-Based Cell Type Purification for Single-Cell SequencingData

A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. 'scGate' automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. Briefly, 'scGate' takes as input: i) a gene expression matrix stored in a 'Seurat' object and ii) a “gating model” (GM), consisting of a set of marker genes that define the cell population of interest. The GM can be as simple as a single marker gene, or a combination of positive and negative markers. More complex GMs can be constructed in a hierarchical fashion, akin to gating strategies employed in flow cytometry. 'scGate' evaluates the strength of signature marker expression in each cell using the rank-based method 'UCell', and then performs k-nearest neighbor (kNN) smoothing by calculating the mean 'UCell' score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNA-seq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest. See the related publication Andreatta et al. (2022) <doi:10.1093/bioinformatics/btac141>.

Version:1.7.2
Depends:R (≥ 4.3.0)
Imports:Seurat (≥ 4.0.0),UCell (≥ 2.6.0),dplyr, stats, utils, methods,patchwork,ggridges,colorspace,reshape2,ggplot2,BiocParallel
Suggests:ggparty,partykit,knitr,rmarkdown
Published:2025-07-23
DOI:10.32614/CRAN.package.scGate
Author:Massimo AndreattaORCID iD [aut, cre], Ariel BerensteinORCID iD [aut], Josep Garnica [aut], Santiago CarmonaORCID iD [aut]
Maintainer:Massimo Andreatta <massimo.andreatta at unige.ch>
BugReports:https://github.com/carmonalab/scGate/issues
License:GPL-3
URL:https://github.com/carmonalab/scGate
NeedsCompilation:no
Citation:scGate citation info
Materials:NEWS
CRAN checks:scGate results

Documentation:

Reference manual:scGate.html ,scGate.pdf
Vignettes:Index of scGate vignettes (source)

Downloads:

Package source: scGate_1.7.2.tar.gz
Windows binaries: r-devel:scGate_1.7.2.zip, r-release:scGate_1.7.2.zip, r-oldrel:scGate_1.7.2.zip
macOS binaries: r-release (arm64):scGate_1.7.2.tgz, r-oldrel (arm64):scGate_1.7.2.tgz, r-release (x86_64):scGate_1.7.2.tgz, r-oldrel (x86_64):scGate_1.7.2.tgz
Old sources: scGate archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=scGateto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp