Movatterモバイル変換


[0]ホーム

URL:


IVDML: Double Machine Learning with Instrumental Variables andHeterogeneity

Instrumental variable (IV) estimators for homogeneous and heterogeneous treatment effects with efficient machine learning instruments. The estimators are based on double/debiased machine learning allowing for nonlinear and potentially high-dimensional control variables. Details can be found in Scheidegger, Guo and Bühlmann (2025) "Inference for heterogeneous treatment effects with efficient instruments and machine learning" <doi:10.48550/arXiv.2503.03530>.

Version:1.0.1
Imports:mgcv,ranger, stats,xgboost (≥ 3.1.2.1)
Suggests:testthat (≥ 3.0.0)
Published:2025-12-12
DOI:10.32614/CRAN.package.IVDML
Author:Cyrill ScheideggerORCID iD [aut, cre, cph]
Maintainer:Cyrill Scheidegger <cyrill.scheidegger at stat.math.ethz.ch>
License:GPL (≥ 3)
URL:https://github.com/cyrillsch/IVDML
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:IVDML results

Documentation:

Reference manual:IVDML.html ,IVDML.pdf

Downloads:

Package source: IVDML_1.0.1.tar.gz
Windows binaries: r-devel:IVDML_1.0.1.zip, r-release:IVDML_1.0.1.zip, r-oldrel:IVDML_1.0.1.zip
macOS binaries: r-release (arm64):IVDML_1.0.1.tgz, r-oldrel (arm64):IVDML_1.0.1.tgz, r-release (x86_64):IVDML_1.0.1.tgz, r-oldrel (x86_64):IVDML_1.0.1.tgz
Old sources: IVDML archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=IVDMLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp