Movatterモバイル変換


[0]ホーム

URL:


plsmselect: Linear and Smooth Predictor Modelling with Penalisation andVariable Selection

Fit a model with potentially many linear and smooth predictors. Interaction effects can also be quantified. Variable selection is done using penalisation. For l1-type penalties we use iterative steps alternating between using linear predictors (lasso) and smooth predictors (generalised additive model).

Version:0.2.0
Depends:R (≥ 3.5.0)
Imports:dplyr (≥ 0.7.8),glmnet (≥ 2.0.16),mgcv (≥ 1.8.26),survival (≥ 2.43.3)
Suggests:knitr,rmarkdown,kableExtra,purrr
Published:2019-11-24
DOI:10.32614/CRAN.package.plsmselect
Author:Indrayudh Ghosal [aut, cre], Matthias Kormaksson [aut]
Maintainer:Indrayudh Ghosal <ig248 at cornell.edu>
License:GPL-2
NeedsCompilation:no
CRAN checks:plsmselect results

Documentation:

Reference manual:plsmselect.html ,plsmselect.pdf
Vignettes:The plsmselect package (source,R code)

Downloads:

Package source: plsmselect_0.2.0.tar.gz
Windows binaries: r-devel:plsmselect_0.2.0.zip, r-release:plsmselect_0.2.0.zip, r-oldrel:plsmselect_0.2.0.zip
macOS binaries: r-release (arm64):plsmselect_0.2.0.tgz, r-oldrel (arm64):plsmselect_0.2.0.tgz, r-release (x86_64):plsmselect_0.2.0.tgz, r-oldrel (x86_64):plsmselect_0.2.0.tgz
Old sources: plsmselect archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=plsmselectto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp