Movatterモバイル変換


[0]ホーム

URL:


idmc

R-CMD-checkLifecycle: experimental

The goal of idmc is to provide easy access and wrangling ofdisplacement data stored in theInternal DisplacementMonitoring Centre’s (IDMC) displacement database. The data isretrieved from theInternalDisplacement Update API.

Installation

You can install idmc from CRAN:

install.packages("idmc")

Alternatively, you can install the development version of idmc fromGitHub with:

# install.packages("devtools")devtools::install_github("OCHA-DAP/idmc")

API URL

You need an IDMC endpoint URL to access the API. These are providedby IDMC. The easiest way to save the URL for use in your R sessions isby usingusethis::edit_r_environ() and adding the variablethere as:

IDMC_API="Insert API URL here"

Usage

library(idmc)

The simple use for theidmc package is to retrieve thedata from the API directly into R.

df<-idmc_get_data()df#> # A tibble: 20,289 × 26#>        id country  iso3  latitude longitude centroid displacement_type qualifier#>     <int> <chr>    <chr>    <dbl>     <dbl> <chr>    <chr>             <chr>#>  1 120233 United … USA      31.1     -93.2  [31.114… Disaster          total#>  2 120186 United … USA      39.1     -94.5  [39.092… Disaster          total#>  3 120191 United … USA      44.9    -123.   [44.912… Disaster          total#>  4 120197 Dominic… DOM      19.3     -70.0  [19.281… Disaster          total#>  5 120195 Dominic… DOM      19.3     -70.0  [19.281… Disaster          total#>  6 120110 France   FRA      44.5       6.47 [44.498… Disaster          more than#>  7 120124 Indones… IDN      -7.46    109.   [-7.458… Disaster          total#>  8 120188 United … USA      30.7     -93.5  [30.706… Disaster          total#>  9 120208 Viet Nam VNM      22.8     105.   [22.779… Disaster          total#> 10 120047 Philipp… PHL       6.85    124.   [6.8514… Disaster          total#> # ℹ 20,279 more rows#> # ℹ 18 more variables: figure <int>, displacement_date <date>,#> #   displacement_start_date <date>, displacement_end_date <date>, year <int>,#> #   event_name <chr>, event_start_date <date>, event_end_date <date>,#> #   category <chr>, subcategory <chr>, type <chr>, subtype <chr>,#> #   standard_popup_text <chr>, event_url <chr>, event_info <chr>,#> #   standard_info_text <chr>, old_id <chr>, created_at <date>

This data frame, with variables described in theAPIdocumentation, includes 1 row per event. We can normalize this todaily displacement, assuming uniform distribution of displacementbetween start and end date, for all countries and type of displacement.idmc_transform_daily().

idmc_transform_daily(df)#> # A tibble: 71,750 × 5#>    iso3  country    displacement_type date       displacement_daily#>    <chr> <chr>      <chr>             <date>                  <dbl>#>  1 AB9   Abyei Area Conflict          2020-01-20               600#>  2 AB9   Abyei Area Conflict          2020-01-21               600#>  3 AB9   Abyei Area Conflict          2020-01-22               600#>  4 AB9   Abyei Area Conflict          2020-01-23               600#>  5 AB9   Abyei Area Conflict          2020-01-24               600#>  6 AB9   Abyei Area Conflict          2020-01-25               600#>  7 AB9   Abyei Area Conflict          2020-01-26               600#>  8 AB9   Abyei Area Conflict          2020-01-27               600#>  9 AB9   Abyei Area Conflict          2020-04-13               260#> 10 AB9   Abyei Area Conflict          2022-02-10              9937.#> # ℹ 71,740 more rows

While there are a few other parameters you can play around with inthese functions, this is the primary purpose of this simple package.


[8]ページ先頭

©2009-2025 Movatter.jp