Movatterモバイル変換


[0]ホーム

URL:


probe: Sparse High-Dimensional Linear Regression with PROBE

Implements an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. It uses minimal prior assumptions on the parameters through plug-in empirical Bayes estimates of hyperparameters. An efficient Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm estimates maximum a posteriori (MAP) values of regression parameters and variable selection probabilities. The PX-ECM results in a robust computationally efficient coordinate-wise optimization, which adjusts for the impact of other predictor variables. The E-step is motivated by the popular two-group approach to multiple testing. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression, implemented using one-at-a-time or all-at-once type optimization. More information can be found in McLain, Zgodic, and Bondell (2022) <doi:10.48550/arXiv.2209.08139>.

Version:1.1
Depends:R (≥ 4.00)
Imports:Rcpp,glmnet
LinkingTo:Rcpp,RcppArmadillo
Published:2023-10-31
DOI:10.32614/CRAN.package.probe
Author:Alexander McLainORCID iD [aut, cre], Anja Zodiac [aut, ctb]
Maintainer:Alexander McLain <mclaina at mailbox.sc.edu>
BugReports:https://github.com/alexmclain/PROBE/issues
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
CRAN checks:probe results

Documentation:

Reference manual:probe.html ,probe.pdf

Downloads:

Package source: probe_1.1.tar.gz
Windows binaries: r-devel:probe_1.1.zip, r-release:probe_1.1.zip, r-oldrel:probe_1.1.zip
macOS binaries: r-release (arm64):probe_1.1.tgz, r-oldrel (arm64):probe_1.1.tgz, r-release (x86_64):probe_1.1.tgz, r-oldrel (x86_64):probe_1.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=probeto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp