Movatterモバイル変換


[0]ホーム

URL:


msPCA: Sparse Principal Component Analysis with Multiple PrincipalComponents

Implements an algorithm for computing multiple sparse principal components of a dataset. The method is based on Cory-Wright and Pauphilet "Sparse PCA with Multiple Principal Components" (2022) <doi:10.48550/arXiv.2209.14790>. The algorithm uses an iterative deflation heuristic with a truncated power method applied at each iteration to compute sparse principal components with controlled sparsity.

Version:0.1.0
Imports:Rcpp (≥ 1.0.11)
LinkingTo:Rcpp,RcppEigen
Published:2025-12-09
DOI:10.32614/CRAN.package.msPCA
Author:Ryan Cory-WrightORCID iD [aut, cph], Jean PauphiletORCID iD [aut, cre, cph]
Maintainer:Jean Pauphilet <jpauphilet at london.edu>
License:MIT + fileLICENSE
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:msPCA results

Documentation:

Reference manual:msPCA.html ,msPCA.pdf

Downloads:

Package source: msPCA_0.1.0.tar.gz
Windows binaries: r-devel:not available, r-release:msPCA_0.1.0.zip, r-oldrel:msPCA_0.1.0.zip
macOS binaries: r-release (arm64):msPCA_0.1.0.tgz, r-oldrel (arm64):msPCA_0.1.0.tgz, r-release (x86_64):msPCA_0.1.0.tgz, r-oldrel (x86_64):msPCA_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=msPCAto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp