Movatterモバイル変換


[0]ホーム

URL:


conquer: Convolution-Type Smoothed Quantile Regression

Estimation and inference for conditional linear quantile regression models using a convolution smoothed approach. In the low-dimensional setting, efficient gradient-based methods are employed for fitting both a single model and a regression process over a quantile range. Normal-based and (multiplier) bootstrap confidence intervals for all slope coefficients are constructed. In high dimensions, the conquer method is complemented with flexible types of penalties (Lasso, elastic-net, group lasso, sparse group lasso, scad and mcp) to deal with complex low-dimensional structures.

Version:1.3.3
Depends:R (≥ 3.5.0)
Imports:Rcpp (≥ 1.0.3),Matrix,matrixStats, stats
LinkingTo:Rcpp,RcppArmadillo (≥ 0.9.850.1.0)
Published:2023-03-06
DOI:10.32614/CRAN.package.conquer
Author:Xuming He [aut], Xiaoou Pan [aut, cre], Kean Ming Tan [aut], Wen-Xin Zhou [aut]
Maintainer:Xiaoou Pan <xip024 at ucsd.edu>
License:GPL-3
URL:https://github.com/XiaoouPan/conquer
NeedsCompilation:yes
SystemRequirements:C++17
Materials:README
CRAN checks:conquer results

Documentation:

Reference manual:conquer.html ,conquer.pdf

Downloads:

Package source: conquer_1.3.3.tar.gz
Windows binaries: r-devel:conquer_1.3.3.zip, r-release:conquer_1.3.3.zip, r-oldrel:conquer_1.3.3.zip
macOS binaries: r-release (arm64):conquer_1.3.3.tgz, r-oldrel (arm64):conquer_1.3.3.tgz, r-release (x86_64):conquer_1.3.3.tgz, r-oldrel (x86_64):conquer_1.3.3.tgz
Old sources: conquer archive

Reverse dependencies:

Reverse imports:diagL1,HIMA,Qtools
Reverse suggests:quantreg,SGDinference

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=conquerto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp