Movatterモバイル変換


[0]ホーム

URL:


Title:Sparse Latent Class Model for Cognitive Diagnosis
Version:0.1.1
Description:Perform a Bayesian estimation of the exploratory Sparse Latent Class Model for Binary Data described by Chen, Y., Culpepper, S. A., and Liang, F. (2020) <doi:10.1007/s11336-019-09693-2>.
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://tmsalab.github.io/slcm/,https://github.com/tmsalab/slcm
BugReports:https://github.com/tmsalab/slcm/issues
Depends:R (≥ 4.3.0)
Imports:Rcpp (≥ 1.1.0), edmdata
LinkingTo:Rcpp, RcppArmadillo (≥ 15.0.2-2)
Suggests:altdoc
Encoding:UTF-8
RoxygenNote:7.3.3
NeedsCompilation:yes
Packaged:2025-09-26 16:58:03 UTC; ronin
Author:James Joseph BalamutaORCID iD [aut, cre, cph], Steven Andrew CulpepperORCID iD [aut, cph]
Maintainer:James Joseph Balamuta <balamut2@illinois.edu>
Repository:CRAN
Date/Publication:2025-09-28 12:20:02 UTC

slcm: Sparse Latent Class Model for Cognitive Diagnosis

Description

Perform a Bayesian estimation of the exploratory Sparse Latent Class Model for Binary Data described by Chen, Y., Culpepper, S. A., and Liang, F. (2020)doi:10.1007/s11336-019-09693-2.

Author(s)

Maintainer: James Joseph Balamutabalamut2@illinois.edu (ORCID) [copyright holder]

Authors:

See Also

Useful links:


Generate attribute pattern table header

Description

Generate attribute pattern table header

Usage

attribute_pattern_table_header(k, m = 2, order = k)

Arguments

k

Number of Attributes.

m

Number of Categories. Default 2 or dichotomous response.

order

Order of the table. Defaultk or the full order.

Value

Return a matrix containing the class table

Examples

# K = 3attribute_pattern_table_header(3)# K = 4attribute_pattern_table_header(4)

Print the SLCM object

Description

Custom printing class to reveal features of the fitted SLCM.

Usage

## S3 method for class 'slcm'print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x

theslcm object.

digits

the number of significant digits

...

further arguments passed to or from other methods.

Value

Print details and estimates found within the fitted SLCM.Return the model invisibly (viainvisible())


Sparse Latent Class Model for Cognitive Diagnosis (SLCM)

Description

Performs the Gibbs sampling routine for a sparse latent class modelas described in Chen et al. (2020) <doi: 10.1007/s11336-019-09693-2>

Usage

slcm(  y,  k,  burnin = 1000L,  chain_length = 10000L,  psi_invj = c(1, rep(2, 2^k - 1)),  m0 = 0,  bq = 1)

Arguments

y

Item Matrix

k

Dimension to estimate for Q matrix

burnin

Amount of Draws to Burn

chain_length

Number of Iterations for chain.

psi_invj,m0,bq

Additional tuning parameters.

Details

Theestimates list contains the mean information from the samplingprocedure. Meanwhile, thechain list contains full MCMC values. Lastly,thedetails list provides information regarding the estimation call.

Value

Anslcm object containing three named lists:

Examples

# Load Namespacenaming = requireNamespace("edmdata", quietly = TRUE)# Use a demo data set from the paperdata("items_matrix_reasoning", package = "edmdata")  burnin = 50        # Set for demonstration purposes, increase to at least 1,000 in practice.chain_length = 100 # Set for demonstration purposes, increase to at least 10,000 in practice.    model_reasoning = slcm(edmdata::items_matrix_reasoning, k = 4,                        burnin = burnin, chain_length = chain_length)                         print(model_reasoning)

[8]ページ先頭

©2009-2025 Movatter.jp