Movatterモバイル変換


[0]ホーム

URL:


policytree: Policy Learning via Doubly Robust Empirical Welfare Maximizationover Trees

Learn optimal policies via doubly robust empirical welfare maximization over trees. Given doubly robust reward estimates, this package finds a rule-based treatment prescription policy, where the policy takes the form of a shallow decision tree that is globally (or close to) optimal.

Version:1.2.3
Depends:R (≥ 3.5.0)
Imports:Rcpp,grf (≥ 2.0.0)
LinkingTo:Rcpp,BH
Suggests:testthat (≥ 3.0.4),DiagrammeR
Published:2024-06-13
DOI:10.32614/CRAN.package.policytree
Author:Erik Sverdrup [aut, cre], Ayush Kanodia [aut], Zhengyuan Zhou [aut], Susan Athey [aut], Stefan Wager [aut]
Maintainer:Erik Sverdrup <erik.sverdrup at monash.edu>
BugReports:https://github.com/grf-labs/policytree/issues
License:MIT + fileLICENSE
URL:https://github.com/grf-labs/policytree
NeedsCompilation:yes
CRAN checks:policytree results

Documentation:

Reference manual:policytree.html ,policytree.pdf

Downloads:

Package source: policytree_1.2.3.tar.gz
Windows binaries: r-devel:policytree_1.2.3.zip, r-release:policytree_1.2.3.zip, r-oldrel:policytree_1.2.3.zip
macOS binaries: r-release (arm64):policytree_1.2.3.tgz, r-oldrel (arm64):policytree_1.2.3.tgz, r-release (x86_64):policytree_1.2.3.tgz, r-oldrel (x86_64):policytree_1.2.3.tgz
Old sources: policytree archive

Reverse dependencies:

Reverse imports:EpiForsk,polle
Reverse suggests:fastpolicytree

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=policytreeto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp