Movatterモバイル変換


[0]ホーム

URL:


ddalpha: Depth-Based Classification and Calculation of Data Depth

Contains procedures for depth-based supervised learning, which are entirely non-parametric, in particular the DDalpha-procedure (Lange, Mosler and Mozharovskyi, 2014 <doi:10.1007/s00362-012-0488-4>). The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included. (Pokotylo, Mozharovskyi and Dyckerhoff, 2019 <doi:10.18637/jss.v091.i05>).

Version:1.3.16
Depends:R (≥ 2.10), stats, utils, graphics, grDevices,MASS,class,robustbase,sfsmisc,geometry
Imports:Rcpp (≥ 0.11.0)
LinkingTo:BH,Rcpp
Published:2024-09-30
DOI:10.32614/CRAN.package.ddalpha
Author:Oleksii Pokotylo [aut, cre], Pavlo Mozharovskyi [aut], Rainer Dyckerhoff [aut], Stanislav Nagy [aut]
Maintainer:Oleksii Pokotylo <alexey.pokotylo at gmail.com>
License:GPL-2
NeedsCompilation:yes
Citation:ddalpha citation info
In views:AnomalyDetection,FunctionalData
CRAN checks:ddalpha results

Documentation:

Reference manual:ddalpha.html ,ddalpha.pdf

Downloads:

Package source: ddalpha_1.3.16.tar.gz
Windows binaries: r-devel:ddalpha_1.3.16.zip, r-release:ddalpha_1.3.16.zip, r-oldrel:ddalpha_1.3.16.zip
macOS binaries: r-release (arm64):ddalpha_1.3.16.tgz, r-oldrel (arm64):ddalpha_1.3.16.tgz, r-release (x86_64):ddalpha_1.3.16.tgz, r-oldrel (x86_64):ddalpha_1.3.16.tgz
Old sources: ddalpha archive

Reverse dependencies:

Reverse depends:curveDepth
Reverse imports:Anthropometry,gggda,KWCChangepoint,pdSpecEst,RepeatedHighDim,SimBaRepro
Reverse suggests:butcher,ordr,recipes

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ddalphato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp