Movatterモバイル変換


[0]ホーム

URL:


PUlasso: High-Dimensional Variable Selection with Presence-Only Data

Efficient algorithm for solving PU (Positive and Unlabeled) problem in low or high dimensional setting with lasso or group lasso penalty. The algorithm uses Maximization-Minorization and (block) coordinate descent. Sparse calculation and parallel computing are supported for the computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) <doi:10.48550/arXiv.1711.08129>.

Version:3.2.5
Depends:R (≥ 2.10)
Imports:Rcpp (≥ 0.12.8), methods,Matrix,doParallel,foreach,ggplot2
LinkingTo:Rcpp,RcppEigen,Matrix
Suggests:testthat,knitr,rmarkdown
Published:2023-12-18
DOI:10.32614/CRAN.package.PUlasso
Author:Hyebin Song [aut, cre], Garvesh Raskutti [aut]
Maintainer:Hyebin Song <hps5320 at psu.edu>
BugReports:https://github.com/hsong1/PUlasso/issues
License:GPL-2
URL:https://arxiv.org/abs/1711.08129
NeedsCompilation:yes
Materials:README
CRAN checks:PUlasso results

Documentation:

Reference manual:PUlasso.html ,PUlasso.pdf
Vignettes:PUlasso-vignette (source,R code)

Downloads:

Package source: PUlasso_3.2.5.tar.gz
Windows binaries: r-devel:PUlasso_3.2.5.zip, r-release:PUlasso_3.2.5.zip, r-oldrel:PUlasso_3.2.5.zip
macOS binaries: r-release (arm64):PUlasso_3.2.5.tgz, r-oldrel (arm64):PUlasso_3.2.5.tgz, r-release (x86_64):PUlasso_3.2.5.tgz, r-oldrel (x86_64):PUlasso_3.2.5.tgz
Old sources: PUlasso archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PUlassoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp