Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Replicability Analysis of High-Throughput Experiments
Version:1.0.2
Description:Implementing a computationally scalable false discovery rate control procedure for replicability analysis based on maximum of p-values. Please cite the manuscript corresponding to this package [Lyu, P. et al., (2023), <doi:10.1093/bioinformatics/btad366>].
License:GPL-3
Encoding:UTF-8
Depends:R (≥ 4.1.2), Rcpp, splines, stats
LinkingTo:Rcpp, RcppArmadillo
RoxygenNote:7.2.3
NeedsCompilation:yes
Packaged:2025-05-30 12:28:20 UTC; P53
Author:Pengfei Lyu [aut, ctb], Yan Li [aut, cre, cph], Xiaoquan Wen [aut], Hongyuan Cao [aut, ctb]
Maintainer:Yan Li <yanli_@jlu.edu.cn>
Repository:CRAN
Date/Publication:2025-05-30 12:40:02 UTC

Replicability Analysis of High-Throughput Experiments

Description

Replicability Analysis of High-Throughput Experiments

Usage

JUMP(pvals1, pvals2, alpha = 0.05, lambda = seq(0.01, 0.8, 0.01))

Arguments

pvals1

A numeric vector of p-values from study 1.

pvals2

A numeric vector of p-values from study 2.

alpha

The FDR level to control, default is 0.05.

lambda

The values of the tuning parameter to estimate pi_0. Must be in [0,1), default is seq(0.01, 0.8, 0.01).

Value

a list with the following elements:

p.max

The maximum of p-values across two studies.

jump.thr

The estimated threshold of p.max to control FDR at level alpha.

Examples

# Simulate p-values in two studiesm = 10000h = sample(0:3, m, replace = TRUE, prob = c(0.9, 0.025, 0.025, 0.05))states1 = rep(0, m); states2 = rep(0, m)states1[which(h==2|h==3)] = 1; states2[which(h==1|h==3)] = 1z1 = rnorm(m, states1*2, 1)z2 = rnorm(m, states2*3, 1)p1 = 1 - pnorm(z1); p2 = 1 - pnorm(z2)# Run JUMP to identify replicable signalsres.jump = JUMP(p1, p2, alpha = 0.05)sig.idx = which(res.jump$p.max <= res.jump$jump.thr)

Estimate threshold of maximum p-values across two studies to control FDR.

Description

Estimate threshold of maximum p-values across two studies to control FDR.

Usage

jump_cutoff(pa_in, pb_in, xi_in, alpha_in)

Arguments

pa_in

A numeric vector of p-values from study 1.

pb_in

A numeric vector of p-values from study 2.

xi_in

The estimates of proportions of three null components.

alpha_in

The FDR level to control, default is 0.05.

Value

A list including the maximum of p-values and estimated threshold for FDR control.


[8]ページ先頭

©2009-2025 Movatter.jp