Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Sequence Generalization Through Similarity Network
Version:2.0.0
Maintainer:Giancarlo Vercellino <giancarlo.vercellino@gmail.com>
Description:Proposes an application for sequence prediction generalizing the similarity within the network of previous sequences.
License:GPL-3
Encoding:UTF-8
LazyData:true
RoxygenNote:7.2.3
Depends:R (≥ 3.6)
Imports:purrr (≥ 0.3.4), ggplot2 (≥ 3.3.5), readr (≥ 2.1.2),lubridate (≥ 1.7.10), imputeTS (≥ 3.2), fANCOVA (≥ 0.6-1),scales (≥ 1.1.1), tictoc (≥ 1.0.1), modeest (≥ 2.4.0),moments (≥ 0.14), greybox (≥ 1.0.1), philentropy (≥ 0.5.0),entropy (≥ 1.3.1), Rfast (≥ 2.0.6), narray (≥ 0.4.1.1),fastDummies (≥ 1.6.3), dtw (≥ 1.23-1), digest (≥ 0.6.31),furrr (≥ 0.3.1), future (≥ 1.33.0)
URL:https://rpubs.com/giancarlo_vercellino/segen
Suggests:testthat (≥ 3.0.0)
Config/testthat/edition:3
NeedsCompilation:no
Packaged:2025-08-19 13:41:15 UTC; gianc
Author:Giancarlo Vercellino [aut, cre, cph]
Repository:CRAN
Date/Publication:2025-08-19 16:00:02 UTC

segen

Description

Sequence Generalization Through Similarity Network

Usage

segen(  df,  seq_len = NULL,  similarity = NULL,  dist_method = NULL,  rescale = NULL,  smoother = FALSE,  ci = 0.8,  error_scale = "naive",  error_benchmark = "naive",  n_windows = 10,  n_samp = 30,  dates = NULL,  seed = 42,  use_parallel = FALSE,  parallel_workers = NULL)

Arguments

df

data.frame of time features (all numeric OR all categorical).

seq_len

integer, forecasting horizon. If NULL, auto-sampled.

similarity

numeric in (0,1), similarity quantile. If NULL, sampled.

dist_method

character. Options:"euclidean","manhattan","maximum","minkowski","correlation","dtw".If NULL, sampled from available methods (skips 'dtw' if pkg missing).

rescale

logical, rescale weights before normalization.

smoother

logical, apply loess smoothing for numeric features.

ci

numeric in (0,1), confidence level.

error_scale

"naive" or "deviation".

error_benchmark

"naive" or "average".

n_windows

integer, rolling validation windows.

n_samp

integer, random search samples.

dates

Date vector aligned with rows of df (optional).

seed

integer, RNG seed.

use_parallel

logical, use furrr/future for parallel exploration.

parallel_workers

NULL or integer, number of workers when parallel.

Value

list with exploration, history, best_model, time_log.

This function returns a list including:

Author(s)

Giancarlo Vercellinogiancarlo.vercellino@gmail.com

Maintainer: Giancarlo Vercellinogiancarlo.vercellino@gmail.com [copyright holder]

See Also

Useful links:

Examples

segen(time_features[, 1, drop = FALSE], seq_len = 30, similarity = 0.7, n_windows = 3, n_samp = 1)

time features example: IBM and Microsoft Close Prices

Description

A data frame with with daily with daily prices for IBM and Microsoft since April 2020

Usage

time_features

Format

A data frame with 2 columns and 1324 rows.

Source

finance.yahoo.com


[8]ページ先頭

©2009-2025 Movatter.jp