Movatterモバイル変換


[0]ホーム

URL:


ebm: Explainable Boosting Machines

An interface to the 'Python' 'InterpretML' framework for fitting explainable boosting machines (EBMs); see Nori et al. (2019) <doi:10.48550/arXiv.1909.09223> for details. EBMs are a modern type of generalized additive model that use tree-based, cyclic gradient boosting with automatic interaction detection. They are often as accurate as state-of-the-art blackbox models while remaining completely interpretable.

Version:0.1.0
Depends:R (≥ 3.5.0)
Imports:reticulate,ggplot2 (≥ 0.9.0),lattice
Suggests:htmltools,ISLR2,knitr,rmarkdown,rstudioapi
Published:2025-03-05
DOI:10.32614/CRAN.package.ebm
Author:Brandon M. GreenwellORCID iD [aut, cre]
Maintainer:Brandon M. Greenwell <greenwell.brandon at gmail.com>
License:MIT + fileLICENSE
URL:https://github.com/bgreenwell/ebm,https://bgreenwell.github.io/ebm/
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:ebm results

Documentation:

Reference manual:ebm.html ,ebm.pdf
Vignettes:Introduction to ebm (source,R code)
ebm-introduction (source)

Downloads:

Package source: ebm_0.1.0.tar.gz
Windows binaries: r-devel:ebm_0.1.0.zip, r-release:ebm_0.1.0.zip, r-oldrel:ebm_0.1.0.zip
macOS binaries: r-release (arm64):ebm_0.1.0.tgz, r-oldrel (arm64):ebm_0.1.0.tgz, r-release (x86_64):ebm_0.1.0.tgz, r-oldrel (x86_64):ebm_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ebmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp