Movatterモバイル変換


[0]ホーム

URL:


SCOUTer: Simulate Controlled Outliers

Using principal component analysis as a base model, 'SCOUTer' offers a new approach to simulate outliers in a simple and precise way. The user can generate new observations defining them by a pair of well-known statistics: the Squared Prediction Error (SPE) and the Hotelling's T^2 (T^2) statistics. Just by introducing the target values of the SPE and T^2, 'SCOUTer' returns a new set of observations with the desired target properties. Authors: Alba González, Abel Folch-Fortuny, Francisco Arteaga and Alberto Ferrer (2020).

Version:1.0.0
Depends:R (≥ 3.5.0),ggplot2,ggpubr, stats
Suggests:knitr,rmarkdown
Published:2020-06-30
DOI:10.32614/CRAN.package.SCOUTer
Author:Alba Gonzalez Cebrian [aut, cre], Abel Folch-Fortuny [aut], Francisco Arteaga [aut], Alberto Ferrer [aut]
Maintainer:Alba Gonzalez Cebrian <algonceb at upv.es>
License:GPL-3
NeedsCompilation:no
Materials:README
In views:AnomalyDetection
CRAN checks:SCOUTer results

Documentation:

Reference manual:SCOUTer.html ,SCOUTer.pdf
Vignettes:SCOUTer demo (source,R code)

Downloads:

Package source: SCOUTer_1.0.0.tar.gz
Windows binaries: r-devel:SCOUTer_1.0.0.zip, r-release:SCOUTer_1.0.0.zip, r-oldrel:SCOUTer_1.0.0.zip
macOS binaries: r-release (arm64):SCOUTer_1.0.0.tgz, r-oldrel (arm64):SCOUTer_1.0.0.tgz, r-release (x86_64):SCOUTer_1.0.0.tgz, r-oldrel (x86_64):SCOUTer_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SCOUTerto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp