Movatterモバイル変換


[0]ホーム

URL:


torch

Lifecycle: experimentalTestCRAN statusDiscord

Installation

torch can be installed from CRAN with:

install.packages("torch")

You can also install the development version with:

remotes::install_github("mlverse/torch")

At the first package load additional software will be installed. Seealso the fullinstallationguide here.

Examples

You can create torch tensors from R objects with thetorch_tensor function and convert them back to R objectswithas_array.

library(torch)x<-array(runif(8),dim =c(2,2,2))y<-torch_tensor(x,dtype =torch_float64())y#> torch_tensor#> (1,.,.) =#>   0.6192  0.5800#>   0.2488  0.3681#>#> (2,.,.) =#>   0.0042  0.9206#>   0.4388  0.5664#> [ CPUDoubleType{2,2,2} ]identical(x,as_array(y))#> [1] TRUE

Simple Autograd Example

In the following snippet we let torch, using the autograd feature,calculate the derivatives:

x<-torch_tensor(1,requires_grad =TRUE)w<-torch_tensor(2,requires_grad =TRUE)b<-torch_tensor(3,requires_grad =TRUE)y<- w* x+ by$backward()x$grad#> torch_tensor#>  2#> [ CPUFloatType{1} ]w$grad#> torch_tensor#>  1#> [ CPUFloatType{1} ]b$grad#> torch_tensor#>  1#> [ CPUFloatType{1} ]

Contributing

No matter your current skills it’s possible to contribute totorch development. See thecontributingguide for more information.


[8]ページ先頭

©2009-2025 Movatter.jp