Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Partial Profile Score Feature Selection in High-DimensionalGeneralized Linear Interaction Models
Version:0.1.1
Date:2025-07-04
Maintainer:Zengchao Xu <zengc.xu@aliyun.com>
Description: This is an implementation of the partial profile score feature selection (PPSFS) approach to generalized linear (interaction) models. The PPSFS is highly scalable even for ultra-high-dimensional feature space. See the paper by Xu, Luo and Chen (2022, <doi:10.4310/21-SII706>).
URL:https://github.com/paradoxical-rhapsody/PPSFS
BugReports:https://github.com/paradoxical-rhapsody/PPSFS/issues
Imports:Rcpp, brglm2
LinkingTo:Rcpp, RcppArmadillo
License:GPL-3
Encoding:UTF-8
Language:en-US
RoxygenNote:7.3.2
NeedsCompilation:yes
Packaged:2025-07-04 01:30:40 UTC; zengchao
Author:Zengchao Xu [aut, cre], Shan Luo [aut], Zehua Chen [aut]
Repository:CRAN
Date/Publication:2025-07-04 02:30:02 UTC

PPSFS: Partial Profile Score Feature Selection in High-Dimensional Generalized Linear Interaction Models

Description

This is an implementation of the partial profile score feature selection (PPSFS) approach to generalized linear (interaction) models. The PPSFS is highly scalable even for ultra-high-dimensional feature space. See the paper by Xu, Luo and Chen (2022,doi:10.4310/21-SII706).

Author(s)

Maintainer: Zengchao Xuzengc.xu@aliyun.com

Authors:

See Also

Useful links:


Partial Profile Score Feature Selection for GLMs

Description

ppsfs: PPSFS formain-effects.

ppsfsi: PPSFS forinteraction effects.

Usage

ppsfs(  x,  y,  family,  keep = NULL,  I0 = NULL,  ...,  ebicFlag = 1,  maxK = min(NROW(x) - 1, NCOL(x) + length(I0)),  verbose = FALSE)ppsfsi(  x,  y,  family,  keep = NULL,  ...,  ebicFlag = 1,  maxK = min(NROW(x) - 1, choose(NCOL(x), 2)),  verbose = FALSE)

Arguments

x

Matrix.

y

Vector.

family

Seeglm andfamily.

keep

Initial set of features that are included in model fitting.

I0

Index set of interaction effects to be identified.

...

Additional parameters forglm.fit.

ebicFlag

The procedure stops when the EBIC increases afterebicFlag times.

maxK

Maximum number of identified features.

verbose

Print the procedure path?

Details

Thatppsfs(x, y, family="gaussian") is an implementation tosequential lasso method proposed by Luo and Chen(2014,<\doi{10/f6kfr6}>).

Value

Index set of identified features.

References

Z. Xu, S. Luo and Z. Chen (2022). Partial profile score feature selection inhigh-dimensional generalized linear interaction models. Statistics and Its Interface.doi:10.4310/21-SII706

Examples

## ***************************************************## Identify main-effect features## ***************************************************set.seed(2022)n <- 300p <- 1000x <- matrix(rnorm(n*p), n)eta <- drop( x[, 1:3] %*% runif(3, 1.0, 1.5) )y <- eta + rnorm(n, sd=sd(eta)/5)print( A <- ppsfs(x, y, 'gaussian', verbose=TRUE) )## ***************************************************## Identify interaction effects## ***************************************************set.seed(2022)n <- 300p <- 150x <- matrix(rnorm(n*p), n)eta <- drop( cbind(x[, 1:3], x[, 4:6]*x[, 7:9]) %*% runif(6, 1.0, 1.5) )y <- eta + rnorm(n, sd=sd(eta)/5)print( group <- ppsfsi(x, y, 'gaussian', verbose=TRUE) )print( A <- ppsfs(x, y, "gaussian", I0=group, verbose=TRUE) )print( A <- ppsfs(x, y, "gaussian", keep=c(1, "5:8"),                   I0=group, verbose=TRUE) )

[8]ページ先頭

©2009-2025 Movatter.jp