Movatterモバイル変換


[0]ホーム

URL:


GenericML: Generic Machine Learning Inference

Generic Machine Learning Inference on heterogeneous treatment effects in randomized experiments as proposed in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <doi:10.48550/arXiv.1712.04802>. This package's workhorse is the 'mlr3' framework of Lang et al. (2019) <doi:10.21105/joss.01903>, which enables the specification of a wide variety of machine learners. The main functionality, GenericML(), runs Algorithm 1 in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <doi:10.48550/arXiv.1712.04802> for a suite of user-specified machine learners. All steps in the algorithm are customizable via setup functions. Methods for printing and plotting are available for objects returned by GenericML(). Parallel computing is supported.

Version:0.2.2
Depends:ggplot2,mlr3,mlr3learners
Imports:sandwich,lmtest,splitstackshape, stats, parallel,abind
Suggests:glmnet,ranger,rpart,e1071,xgboost,kknn,DiceKriging,testthat (≥ 3.0.0)
Published:2022-06-18
DOI:10.32614/CRAN.package.GenericML
Author:Max WelzORCID iD [aut, cre], Andreas AlfonsORCID iD [aut], Mert Demirer [aut], Victor Chernozhukov [aut]
Maintainer:Max Welz <welz at ese.eur.nl>
BugReports:https://github.com/mwelz/GenericML/issues/
License:GPL (≥ 3)
URL:https://github.com/mwelz/GenericML/
NeedsCompilation:no
Citation:GenericML citation info
Materials:NEWS
CRAN checks:GenericML results

Documentation:

Reference manual:GenericML.html ,GenericML.pdf

Downloads:

Package source: GenericML_0.2.2.tar.gz
Windows binaries: r-devel:GenericML_0.2.2.zip, r-release:GenericML_0.2.2.zip, r-oldrel:GenericML_0.2.2.zip
macOS binaries: r-release (arm64):GenericML_0.2.2.tgz, r-oldrel (arm64):GenericML_0.2.2.tgz, r-release (x86_64):GenericML_0.2.2.tgz, r-oldrel (x86_64):GenericML_0.2.2.tgz
Old sources: GenericML archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=GenericMLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp