Movatterモバイル変換


[0]ホーム

URL:


binaryGP: Fit and Predict a Gaussian Process Model with (Time-Series)Binary Response

Allows the estimation and prediction for binary Gaussian process model. The mean function can be assumed to have time-series structure. The estimation methods for the unknown parameters are based on penalized quasi-likelihood/penalized quasi-partial likelihood and restricted maximum likelihood. The predicted probability and its confidence interval are computed by Metropolis-Hastings algorithm. More details can be seen in Sung et al (2017) <doi:10.48550/arXiv.1705.02511>.

Version:0.2
Depends:R (≥ 2.14.1)
Imports:Rcpp (≥ 0.12.0),lhs (≥ 0.10),logitnorm (≥ 0.8.29),nloptr (≥ 1.0.4),GPfit (≥ 1.0-0), stats, graphics, utils, methods
LinkingTo:Rcpp,RcppArmadillo
Published:2017-09-19
DOI:10.32614/CRAN.package.binaryGP
Author:Chih-Li Sung
Maintainer:Chih-Li Sung <iamdfchile at gmail.com>
License:GPL-2 |GPL-3
NeedsCompilation:yes
CRAN checks:binaryGP results

Documentation:

Reference manual:binaryGP.html ,binaryGP.pdf

Downloads:

Package source: binaryGP_0.2.tar.gz
Windows binaries: r-devel:binaryGP_0.2.zip, r-release:binaryGP_0.2.zip, r-oldrel:binaryGP_0.2.zip
macOS binaries: r-release (arm64):binaryGP_0.2.tgz, r-oldrel (arm64):binaryGP_0.2.tgz, r-release (x86_64):binaryGP_0.2.tgz, r-oldrel (x86_64):binaryGP_0.2.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=binaryGPto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp