Movatterモバイル変換


[0]ホーム

URL:


gainML: Machine Learning-Based Analysis of Potential Power Gain fromPassive Device Installation on Wind Turbine Generators

Provides an effective machine learning-based tool that quantifies the gain of passive device installation on wind turbine generators. H. Hwangbo, Y. Ding, and D. Cabezon (2019) <doi:10.48550/arXiv.1906.05776>.

Version:0.1.0
Depends:R (≥ 3.6.0)
Imports:fields (≥ 9.0),FNN (≥ 1.1), utils, stats
Suggests:knitr,rmarkdown
Published:2019-06-28
DOI:10.32614/CRAN.package.gainML
Author:Hoon Hwangbo [aut, cre], Yu Ding [aut], Daniel Cabezon [aut], Texas A&M University [cph], EDP Renewables [cph]
Maintainer:Hoon Hwangbo <hhwangb1 at utk.edu>
License:GPL-3
Copyright:Copyright (c) 2019 Y. Ding, H. Hwangbo, Texas A&MUniversity, D. Cabezon, and EDP Renewables
NeedsCompilation:no
CRAN checks:gainML results

Documentation:

Reference manual:gainML.html ,gainML.pdf
Vignettes:Implementation (source)

Downloads:

Package source: gainML_0.1.0.tar.gz
Windows binaries: r-devel:gainML_0.1.0.zip, r-release:gainML_0.1.0.zip, r-oldrel:gainML_0.1.0.zip
macOS binaries: r-release (arm64):gainML_0.1.0.tgz, r-oldrel (arm64):gainML_0.1.0.tgz, r-release (x86_64):gainML_0.1.0.tgz, r-oldrel (x86_64):gainML_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=gainMLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp