Movatterモバイル変換


[0]ホーム

URL:


powerly: Sample Size Analysis for Psychological Networks and More

An implementation of the sample size computation method for network models proposed by Constantin et al. (2023) <doi:10.1037/met0000555>. The implementation takes the form of a three-step recursive algorithm designed to find an optimal sample size given a model specification and a performance measure of interest. It starts with a Monte Carlo simulation step for computing the performance measure and a statistic at various sample sizes selected from an initial sample size range. It continues with a monotone curve-fitting step for interpolating the statistic across the entire sample size range. The final step employs stratified bootstrapping to quantify the uncertainty around the fitted curve.

Version:1.10.0
Imports:R6,splines2,quadprog,bootnet,qgraph,parabar,ggplot2,rlang,mvtnorm,patchwork
Suggests:testthat (≥ 3.0.0)
Published:2025-09-01
DOI:10.32614/CRAN.package.powerly
Author:Mihai ConstantinORCID iD [aut, cre]
Maintainer:Mihai Constantin <mihai at mihaiconstantin.com>
BugReports:https://github.com/mihaiconstantin/powerly/issues
License:MIT + fileLICENSE
URL:https://powerly.dev
NeedsCompilation:no
Citation:powerly citation info
Materials:README,NEWS
CRAN checks:powerly results

Documentation:

Reference manual:powerly.html ,powerly.pdf

Downloads:

Package source: powerly_1.10.0.tar.gz
Windows binaries: r-devel:powerly_1.10.0.zip, r-release:powerly_1.10.0.zip, r-oldrel:powerly_1.10.0.zip
macOS binaries: r-release (arm64):powerly_1.10.0.tgz, r-oldrel (arm64):powerly_1.10.0.tgz, r-release (x86_64):powerly_1.10.0.tgz, r-oldrel (x86_64):powerly_1.10.0.tgz
Old sources: powerly archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=powerlyto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp