Movatterモバイル変換


[0]ホーム

URL:


pema: Penalized Meta-Analysis

Conduct penalized meta-analysis, see Van Lissa, Van Erp, & Clapper (2023) <doi:10.31234/osf.io/6phs5>. In meta-analysis, there are often between-study differences. These can be coded as moderator variables, and controlled for using meta-regression. However, if the number of moderators is large relative to the number of studies, such an analysis may be overfit. Penalized meta-regression is useful in these cases, because it shrinks the regression slopes of irrelevant moderators towards zero.

Version:0.1.5
Depends:R (≥ 3.4.0)
Imports:methods,rstan (≥ 2.26.0),Rcpp (≥ 0.12.0),RcppParallel (≥5.0.1),rstantools (≥ 2.1.1),sn,shiny,ggplot2,cli
LinkingTo:BH (≥ 1.66.0),Rcpp (≥ 0.12.0),RcppEigen (≥ 0.3.3.3.0),RcppParallel (≥ 5.0.1),rstan (≥ 2.26.0),StanHeaders (≥2.26.0)
Suggests:rmarkdown,knitr,mice,testthat (≥ 3.0.0),webexercises,bain,metaforest,metafor
Published:2025-10-06
DOI:10.32614/CRAN.package.pema
Author:Caspar J van LissaORCID iD [aut, cre], Sara J van Erp [aut]
Maintainer:Caspar J van Lissa <c.j.vanlissa at tilburguniversity.edu>
License:GPL (≥ 3)
URL:https://github.com/cjvanlissa/pema,https://cjvanlissa.github.io/pema/
NeedsCompilation:yes
SystemRequirements:GNU make
Citation:pema citation info
Materials:README
In views:MetaAnalysis
CRAN checks:pema results

Documentation:

Reference manual:pema.html ,pema.pdf
Vignettes:meta-analysis_tutorial (source,R code)
Conducting a Bayesian Regularized Meta-analysis (source,R code)

Downloads:

Package source: pema_0.1.5.tar.gz
Windows binaries: r-devel:pema_0.1.5.zip, r-release:pema_0.1.5.zip, r-oldrel:pema_0.1.5.zip
macOS binaries: r-release (arm64):pema_0.1.5.tgz, r-oldrel (arm64):pema_0.1.5.tgz, r-release (x86_64):pema_0.1.5.tgz, r-oldrel (x86_64):pema_0.1.5.tgz
Old sources: pema archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pemato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp