Movatterモバイル変換


[0]ホーム

URL:


FakeDataR: Privacy-Preserving Synthetic Data for 'LLM' Workflows

Generate privacy-preserving synthetic datasets that mirror structure, types, factor levels, and missingness; export bundles for 'LLM' workflows (data plus 'JSON' schema and guidance); and build fake data directly from 'SQL' database tables without reading real rows. Methods are related to approaches in Nowok, Raab and Dibben (2016) <doi:10.32614/RJ-2016-019> and the foundation-model overview by Bommasani et al. (2021) <doi:10.48550/arXiv.2108.07258>.

Version:0.2.2
Imports:dplyr,jsonlite,zip
Suggests:readr,testthat (≥ 3.0.0),knitr,rmarkdown,DBI,RSQLite,tibble,nycflights13,palmerpenguins,gapminder,arrow,withr
Published:2025-10-06
DOI:10.32614/CRAN.package.FakeDataR
Author:Zobaer Ahmed [aut, cre]
Maintainer:Zobaer Ahmed <zunnun09 at gmail.com>
BugReports:https://github.com/zobaer09/FakeDataR/issues
License:MIT + fileLICENSE
URL:https://zobaer09.github.io/FakeDataR/,https://github.com/zobaer09/FakeDataR
NeedsCompilation:no
Language:en-US
Materials:README,NEWS
CRAN checks:FakeDataR results

Documentation:

Reference manual:FakeDataR.html ,FakeDataR.pdf
Vignettes:Database schema workflow (no data read) (source,R code)
FakeDataR: Getting started (source,R code)
Privacy and validation (source,R code)

Downloads:

Package source: FakeDataR_0.2.2.tar.gz
Windows binaries: r-devel:FakeDataR_0.2.2.zip, r-release:FakeDataR_0.2.2.zip, r-oldrel:FakeDataR_0.2.2.zip
macOS binaries: r-release (arm64):FakeDataR_0.2.2.tgz, r-oldrel (arm64):FakeDataR_0.2.2.tgz, r-release (x86_64):FakeDataR_0.2.2.tgz, r-oldrel (x86_64):FakeDataR_0.2.2.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=FakeDataRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp