Movatterモバイル変換


[0]ホーム

URL:


rcprd: Extraction and Management of Clinical Practice Research DatalinkData

Simplify the process of extracting and processing Clinical Practice Research Datalink (CPRD) data in order to build datasets ready for statistical analysis. This process is difficult in 'R', as the raw data is very large and cannot be read into the R workspace. 'rcprd' utilises 'RSQLite' to create 'SQLite' databases which are stored on the hard disk. These are then queried to extract the required information for a cohort of interest, and create datasets ready for statistical analysis. The processes follow closely that from the 'rEHR' package, see Springate et al., (2017) <doi:10.1371/journal.pone.0171784>.

Version:0.0.2
Depends:R (≥ 4.1.0)
Imports:dplyr,data.table,fastmatch,lubridate,RSQLite,stringr
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-09-07
DOI:10.32614/CRAN.package.rcprd
Author:Alexander PateORCID iD [aut, cre, cph]
Maintainer:Alexander Pate <alexander.pate at manchester.ac.uk>
License:MIT + fileLICENSE
URL:https://alexpate30.github.io/rcprd/
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:rcprd results

Documentation:

Reference manual:rcprd.html ,rcprd.pdf
Vignettes:Details-on-algorithms-for-extracting-specific-variables (source,R code)
rcprd (source,R code)

Downloads:

Package source: rcprd_0.0.2.tar.gz
Windows binaries: r-devel:rcprd_0.0.2.zip, r-release:rcprd_0.0.2.zip, r-oldrel:rcprd_0.0.2.zip
macOS binaries: r-release (arm64):rcprd_0.0.2.tgz, r-oldrel (arm64):rcprd_0.0.2.tgz, r-release (x86_64):rcprd_0.0.2.tgz, r-oldrel (x86_64):rcprd_0.0.2.tgz
Old sources: rcprd archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=rcprdto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp