Movatterモバイル変換


[0]ホーム

URL:


einet: Effective Information and Causal Emergence

Methods and utilities for causal emergence. Used to explore and compute various information theory metrics for networks, such as effective information, effectiveness and causal emergence.

Version:0.1.0
Depends:R (≥ 3.2.0)
Imports:assertthat,igraph,magrittr,shiny,entropy
Suggests:testthat,RColorBrewer,knitr,rmarkdown,bench
Published:2020-04-23
DOI:10.32614/CRAN.package.einet
Author:Travis Byrum [aut, cre], Anshuman Swain [aut], Brennan Klein [aut], William Fagan [aut]
Maintainer:Travis Byrum <tbyrum at terpmail.umd.edu>
BugReports:https://github.com/travisbyrum/einet/issues
License:MIT + fileLICENSE
URL:https://github.com/travisbyrum/einet
NeedsCompilation:no
Materials:README
CRAN checks:einet results

Documentation:

Reference manual:einet.html ,einet.pdf
Vignettes:Introduction (source,R code)

Downloads:

Package source: einet_0.1.0.tar.gz
Windows binaries: r-devel:einet_0.1.0.zip, r-release:einet_0.1.0.zip, r-oldrel:einet_0.1.0.zip
macOS binaries: r-release (arm64):einet_0.1.0.tgz, r-oldrel (arm64):einet_0.1.0.tgz, r-release (x86_64):einet_0.1.0.tgz, r-oldrel (x86_64):einet_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=einetto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp