Movatterモバイル変換


[0]ホーム

URL:


gclm: Graphical Continuous Lyapunov Models

Estimation of covariance matrices as solutions of continuous time Lyapunov equations. Sparse coefficient matrix and diagonal noise are estimated with a proximal gradient method for an l1-penalized loss minimization problem. Varando G, Hansen NR (2020) <doi:10.48550/arXiv.2005.10483>.

Version:0.0.1
Suggests:testthat
Published:2020-06-04
DOI:10.32614/CRAN.package.gclm
Author:Gherardo VarandoORCID iD [aut, cre, cph], Niels Richard HansenORCID iD [aut]
Maintainer:Gherardo Varando <gherardo.varando at gmail.com>
BugReports:https://github.com/gherardovarando/gclm/issues
License:MIT + fileLICENSE
URL:https://github.com/gherardovarando/gclm
NeedsCompilation:yes
Materials:README
CRAN checks:gclm results

Documentation:

Reference manual:gclm.html ,gclm.pdf

Downloads:

Package source: gclm_0.0.1.tar.gz
Windows binaries: r-devel:gclm_0.0.1.zip, r-release:gclm_0.0.1.zip, r-oldrel:gclm_0.0.1.zip
macOS binaries: r-release (arm64):gclm_0.0.1.tgz, r-oldrel (arm64):gclm_0.0.1.tgz, r-release (x86_64):gclm_0.0.1.tgz, r-oldrel (x86_64):gclm_0.0.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=gclmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp