Movatterモバイル変換


[0]ホーム

URL:


garma: Fitting and Forecasting Gegenbauer ARMA Time Series Models

Methods for estimating univariate long memory-seasonal/cyclical Gegenbauer time series processes. See for example (2022) <doi:10.1007/s00362-022-01290-3>. Refer to the vignette for details of fitting these processes.

Version:0.9.24
Depends:forecast,ggplot2
Imports:Rsolnp,nloptr,pracma,signal,zoo,lubridate,rlang,crayon, utils
Suggests:longmemo,yardstick,testthat (≥ 3.0.0),knitr,rmarkdown
Published:2025-03-16
DOI:10.32614/CRAN.package.garma
Author:Richard Hunt [aut, cre]
Maintainer:Richard Hunt <maint at huntemail.id.au>
License:GPL-3
URL:https://github.com/rlph50/garma
NeedsCompilation:no
Materials:README,NEWS
In views:TimeSeries
CRAN checks:garma results

Documentation:

Reference manual:garma.html ,garma.pdf
Vignettes:Introduction to GARMA models (source,R code)

Downloads:

Package source: garma_0.9.24.tar.gz
Windows binaries: r-devel:garma_0.9.24.zip, r-release:garma_0.9.24.zip, r-oldrel:garma_0.9.24.zip
macOS binaries: r-release (arm64):garma_0.9.24.tgz, r-oldrel (arm64):garma_0.9.24.tgz, r-release (x86_64):garma_0.9.24.tgz, r-oldrel (x86_64):garma_0.9.24.tgz
Old sources: garma archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=garmato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp