Movatterモバイル変換


[0]ホーム

URL:


Sieve: Nonparametric Estimation by the Method of Sieves

Performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <doi:10.48550/arXiv.2206.02994> <doi:10.48550/arXiv.2104.00846><doi:10.48550/arXiv.2310.12140>.

Version:2.1
Imports:Rcpp,combinat,glmnet, methods,MASS
LinkingTo:Rcpp,RcppArmadillo
Published:2023-10-19
DOI:10.32614/CRAN.package.Sieve
Author:Tianyu Zhang
Maintainer:Tianyu Zhang <tianyuz3 at andrew.cmu.edu>
License:GPL-2
NeedsCompilation:yes
Materials:README
CRAN checks:Sieve results

Documentation:

Reference manual:Sieve.html ,Sieve.pdf

Downloads:

Package source: Sieve_2.1.tar.gz
Windows binaries: r-devel:Sieve_2.1.zip, r-release:Sieve_2.1.zip, r-oldrel:Sieve_2.1.zip
macOS binaries: r-release (arm64):Sieve_2.1.tgz, r-oldrel (arm64):Sieve_2.1.tgz, r-release (x86_64):Sieve_2.1.tgz, r-oldrel (x86_64):Sieve_2.1.tgz
Old sources: Sieve archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=Sieveto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp