Movatterモバイル変換


[0]ホーム

URL:


dfr: Dual Feature Reduction for SGL

Implementation of the Dual Feature Reduction (DFR) approach for the Sparse Group Lasso (SGL) and the Adaptive Sparse Group Lasso (aSGL) (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.17094>). The DFR approach is a feature reduction approach that applies strong screening to reduce the feature space before optimisation, leading to speed-up improvements for fitting SGL (Simon et al. (2013) <doi:10.1080/10618600.2012.681250>) and aSGL (Mendez-Civieta et al. (2020) <doi:10.1007/s11634-020-00413-8> and Poignard (2020) <doi:10.1007/s10463-018-0692-7>) models. DFR is implemented using the Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) algorithm, with linear and logistic SGL models supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported.

Version:0.1.6
Imports:sgs,caret,MASS, methods, stats, grDevices, graphics,Matrix
Suggests:SGL,gglasso,glmnet,testthat
Published:2025-09-30
DOI:10.32614/CRAN.package.dfr
Author:Fabio FeserORCID iD [aut, cre]
Maintainer:Fabio Feser <ff120 at ic.ac.uk>
BugReports:https://github.com/ff1201/dfr/issues
License:GPL (≥ 3)
URL:https://github.com/ff1201/dfr
NeedsCompilation:no
Citation:dfr citation info
Materials:README
CRAN checks:dfr results

Documentation:

Reference manual:dfr.html ,dfr.pdf

Downloads:

Package source: dfr_0.1.6.tar.gz
Windows binaries: r-devel:dfr_0.1.6.zip, r-release:dfr_0.1.6.zip, r-oldrel:dfr_0.1.6.zip
macOS binaries: r-release (arm64):dfr_0.1.6.tgz, r-oldrel (arm64):dfr_0.1.6.tgz, r-release (x86_64):dfr_0.1.6.tgz, r-oldrel (x86_64):dfr_0.1.6.tgz
Old sources: dfr archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=dfrto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp