Movatterモバイル変換


[0]ホーム

URL:


mlsbm: Efficient Estimation of Bayesian SBMs & MLSBMs

Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in 'Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).

Version:0.99.2
Depends:R (≥ 2.10)
Imports:Rcpp
LinkingTo:Rcpp,RcppArmadillo
Published:2021-02-07
DOI:10.32614/CRAN.package.mlsbm
Author:Carter AllenORCID iD [aut, cre], Dongjun Chung [aut]
Maintainer:Carter Allen <carter.allen12 at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
Materials:README
CRAN checks:mlsbm results

Documentation:

Reference manual:mlsbm.html ,mlsbm.pdf

Downloads:

Package source: mlsbm_0.99.2.tar.gz
Windows binaries: r-devel:mlsbm_0.99.2.zip, r-release:mlsbm_0.99.2.zip, r-oldrel:mlsbm_0.99.2.zip
macOS binaries: r-release (arm64):mlsbm_0.99.2.tgz, r-oldrel (arm64):mlsbm_0.99.2.tgz, r-release (x86_64):mlsbm_0.99.2.tgz, r-oldrel (x86_64):mlsbm_0.99.2.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mlsbmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp