Movatterモバイル変換


[0]ホーム

URL:


sureLDA: A Novel Multi-Disease Automated Phenotyping Method for the EHR

A statistical learning method to simultaneously predict a range of target phenotypes using codified and natural language processing (NLP)-derived Electronic Health Record (EHR) data. See Ahuja et al (2020) JAMIA <doi:10.1093/jamia/ocaa079> for details.

Version:0.1.0-1
Depends:R (≥ 3.0),Matrix
Imports:pROC,glmnet,MAP,Rcpp,foreach,doParallel
LinkingTo:Rcpp,RcppArmadillo
Suggests:knitr,rmarkdown
Published:2020-11-10
DOI:10.32614/CRAN.package.sureLDA
Author:Yuri Ahuja [aut, cre], Tianxi Cai [aut], PARSE LTD [aut]
Maintainer:Yuri Ahuja <Yuri_Ahuja at hms.harvard.edu>
BugReports:https://github.com/celehs/sureLDA/issues
License:GPL-3
URL:https://github.com/celehs/sureLDA
NeedsCompilation:yes
Materials:README
CRAN checks:sureLDA results

Documentation:

Reference manual:sureLDA.html ,sureLDA.pdf
Vignettes:Simulated Example (source,R code)

Downloads:

Package source: sureLDA_0.1.0-1.tar.gz
Windows binaries: r-devel:sureLDA_0.1.0-1.zip, r-release:sureLDA_0.1.0-1.zip, r-oldrel:sureLDA_0.1.0-1.zip
macOS binaries: r-release (arm64):sureLDA_0.1.0-1.tgz, r-oldrel (arm64):sureLDA_0.1.0-1.tgz, r-release (x86_64):sureLDA_0.1.0-1.tgz, r-oldrel (x86_64):sureLDA_0.1.0-1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sureLDAto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp