Movatterモバイル変換


[0]ホーム

URL:


LBBNN: Latent Binary Bayesian Neural Networks Using 'torch'

Latent binary Bayesian neural networks (LBBNNs) are implemented using 'torch', an R interface to the LibTorch backend. Supports mean-field variational inference as well as flexible variational posteriors using normalizing flows. The standard LBBNN implementation follows Hubin and Storvik (2024) <doi:10.3390/math12060788>, using the local reparametrization trick as in Skaaret-Lund et al. (2024) <https://openreview.net/pdf?id=d6kqUKzG3V>. Input-skip connections are also supported, as described in Høyheim et al. (2025) <doi:10.48550/arXiv.2503.10496>.

Version:0.1.2
Depends:R (≥ 3.5)
Imports:ggplot2,torch,igraph,coro,svglite
Suggests:testthat (≥ 3.0.0),knitr,rmarkdown,torchvision
Published:2025-12-10
DOI:10.32614/CRAN.package.LBBNN
Author:Lars Skaaret-Lund [aut, cre], Aliaksandr Hubin [aut], Eirik Høyheim [aut]
Maintainer:Lars Skaaret-Lund <lars.skaaret-lund at nmbu.no>
License:MIT + fileLICENSE
NeedsCompilation:no
Language:en-US
Materials:README,NEWS
CRAN checks:LBBNN results

Documentation:

Reference manual:LBBNN.html ,LBBNN.pdf
Vignettes:Getting started with LBBNN (source,R code)

Downloads:

Package source: LBBNN_0.1.2.tar.gz
Windows binaries: r-devel:LBBNN_0.1.2.zip, r-release:LBBNN_0.1.2.zip, r-oldrel:LBBNN_0.1.2.zip
macOS binaries: r-release (arm64):LBBNN_0.1.2.tgz, r-oldrel (arm64):LBBNN_0.1.2.tgz, r-release (x86_64):LBBNN_0.1.2.tgz, r-oldrel (x86_64):LBBNN_0.1.2.tgz
Old sources: LBBNN archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=LBBNNto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp