Movatterモバイル変換


[0]ホーム

URL:


HTLR: Bayesian Logistic Regression with Heavy-Tailed Priors

Efficient Bayesian multinomial logistic regression based on heavy-tailed (hyper-LASSO, non-convex) priors. The posterior of coefficients and hyper-parameters is sampled with restricted Gibbs sampling for leveraging the high-dimensionality and Hamiltonian Monte Carlo for handling the high-correlation among coefficients. A detailed description of the method: Li and Yao (2018), Journal of Statistical Computation and Simulation, 88:14, 2827-2851, <doi:10.48550/arXiv.1405.3319>.

Version:1.0
Depends:R (≥ 3.6.2)
Imports:Rcpp (≥ 1.0.0),BCBCSF,glmnet,magrittr
LinkingTo:Rcpp (≥ 1.0.0),RcppArmadillo
Suggests:ggplot2,corrplot,testthat,bayesplot,knitr,rmarkdown
Published:2025-12-15
DOI:10.32614/CRAN.package.HTLR
Author:Longhai LiORCID iD [aut], Steven Liu [aut, cre]
Maintainer:Steven Liu <shinyu.lieu at gmail.com>
BugReports:https://github.com/longhaiSK/HTLR/issues
License:GPL-3
URL:https://longhaisk.github.io/HTLR/
NeedsCompilation:yes
Citation:HTLR citation info
Materials:README,NEWS
CRAN checks:HTLR results

Documentation:

Reference manual:HTLR.html ,HTLR.pdf
Vignettes:intro (source,R code)

Downloads:

Package source: HTLR_1.0.tar.gz
Windows binaries: r-devel:HTLR_1.0.zip, r-release:HTLR_0.4-4.zip, r-oldrel:HTLR_1.0.zip
macOS binaries: r-release (arm64):HTLR_1.0.tgz, r-oldrel (arm64):HTLR_1.0.tgz, r-release (x86_64):HTLR_1.0.tgz, r-oldrel (x86_64):HTLR_1.0.tgz
Old sources: HTLR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=HTLRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp