Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <https://hal.archives-ouvertes.fr/hal-01172745v2/document>).
| Version: | 0.99.0 |
| Depends: | igraph,MASS |
| Imports: | Rcpp (≥ 0.12.5) |
| LinkingTo: | Rcpp,RcppArmadillo |
| Published: | 2017-04-11 |
| DOI: | 10.32614/CRAN.package.GADAG |
| Author: | Magali Champion, Victor Picheny and Matthieu Vignes |
| Maintainer: | Magali Champion <magali.champion at parisdescartes.fr> |
| License: | GPL-2 |
| NeedsCompilation: | yes |
| CRAN checks: | GADAG results |
| Reference manual: | GADAG.html ,GADAG.pdf |
| Package source: | GADAG_0.99.0.tar.gz |
| Windows binaries: | r-devel:GADAG_0.99.0.zip, r-release:GADAG_0.99.0.zip, r-oldrel:GADAG_0.99.0.zip |
| macOS binaries: | r-release (arm64):GADAG_0.99.0.tgz, r-oldrel (arm64):GADAG_0.99.0.tgz, r-release (x86_64):GADAG_0.99.0.tgz, r-oldrel (x86_64):GADAG_0.99.0.tgz |
Please use the canonical formhttps://CRAN.R-project.org/package=GADAGto link to this page.