Movatterモバイル変換


[0]ホーム

URL:


sgs: Sparse-Group SLOPE: Adaptive Bi-Level Selection with FDR Control

Implementation of Sparse-group SLOPE (SGS) (Feser and Evangelou (2023) <doi:10.48550/arXiv.2305.09467>) models. Linear and logistic regression models are supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported. In addition, a general Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) implementation is provided. Group SLOPE (gSLOPE) (Brzyski et al. (2019) <doi:10.1080/01621459.2017.1411269>) and group-based OSCAR models (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) are also implemented. All models are available with strong screening rules (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) for computational speed-up.

Version:0.3.9
Imports:Matrix,MASS,caret, grDevices, graphics, methods, stats,SLOPE,Rlab,Rcpp (≥ 1.0.10)
LinkingTo:Rcpp,RcppArmadillo
Suggests:SGL,gglasso,glmnet,testthat,knitr,grpSLOPE,rmarkdown
Published:2025-09-30
DOI:10.32614/CRAN.package.sgs
Author:Fabio FeserORCID iD [aut, cre]
Maintainer:Fabio Feser <ff120 at ic.ac.uk>
BugReports:https://github.com/ff1201/sgs/issues
License:GPL (≥ 3)
URL:https://github.com/ff1201/sgs
NeedsCompilation:yes
Citation:sgs citation info
Materials:README
CRAN checks:sgs results

Documentation:

Reference manual:sgs.html ,sgs.pdf
Vignettes:sgs reproducible example (source,R code)

Downloads:

Package source: sgs_0.3.9.tar.gz
Windows binaries: r-devel:sgs_0.3.9.zip, r-release:sgs_0.3.9.zip, r-oldrel:sgs_0.3.9.zip
macOS binaries: r-release (arm64):sgs_0.3.9.tgz, r-oldrel (arm64):sgs_0.3.9.tgz, r-release (x86_64):sgs_0.3.9.tgz, r-oldrel (x86_64):sgs_0.3.9.tgz
Old sources: sgs archive

Reverse dependencies:

Reverse imports:dfr

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sgsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp