Movatterモバイル変換


[0]ホーム

URL:


remaCor: Random Effects Meta-Analysis for Correlated Test Statistics

Meta-analysis is widely used to summarize estimated effects sizes across multiple statistical tests. Standard fixed and random effect meta-analysis methods assume that the estimated of the effect sizes are statistically independent. Here we relax this assumption and enable meta-analysis when the correlation matrix between effect size estimates is known. Fixed effect meta-analysis uses the method of Lin and Sullivan (2009) <doi:10.1016/j.ajhg.2009.11.001>, and random effects meta-analysis uses the method of Han, et al. <doi:10.1093/hmg/ddw049>.

Version:0.0.20
Depends:R (≥ 3.6.0),ggplot2, methods
Imports:mvtnorm, grid,reshape2, compiler,Rcpp,EnvStats,Rdpack, stats
LinkingTo:Rcpp,RcppArmadillo
Suggests:knitr,RUnit,clusterGeneration,metafor
Published:2025-08-20
DOI:10.32614/CRAN.package.remaCor
Author:Gabriel HoffmanORCID iD [aut, cre]
Maintainer:Gabriel Hoffman <gabriel.hoffman at mssm.edu>
BugReports:https://github.com/DiseaseNeurogenomics/remaCor/issues
License:Artistic-2.0
URL:https://diseaseneurogenomics.github.io/remaCor/
NeedsCompilation:yes
Citation:remaCor citation info
Materials:README,NEWS
In views:MetaAnalysis
CRAN checks:remaCor results

Documentation:

Reference manual:remaCor.html ,remaCor.pdf
Vignettes:remaCor: Random effects meta-analysis for correlated test statistics (source,R code)

Downloads:

Package source: remaCor_0.0.20.tar.gz
Windows binaries: r-devel:remaCor_0.0.20.zip, r-release:remaCor_0.0.20.zip, r-oldrel:remaCor_0.0.20.zip
macOS binaries: r-release (arm64):remaCor_0.0.20.tgz, r-oldrel (arm64):remaCor_0.0.20.tgz, r-release (x86_64):remaCor_0.0.20.tgz, r-oldrel (x86_64):remaCor_0.0.20.tgz
Old sources: remaCor archive

Reverse dependencies:

Reverse imports:dreamlet,variancePartition

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=remaCorto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp