The packageabclass provides implementations of themulti-category angle-based classifiers (Zhang & Liu, 2014) with thelarge-margin unified machines (Liu, et al., 2011) for high-dimensionaldata.
Note
This package is still very experimental and under active development.The function interface is subject to change without guarantee ofbackward compatibility.
One can install the released version fromCRAN.
install.packages("abclass")Alternatively, the version under development can be installed asfollows:
if (!require(remotes))install.packages("remotes")remotes::install_github("wenjie2wang/abclass",upgrade ="never")A toy example is as follows:
library(abclass)packageVersion("abclass")## [1] '0.5.0'## toy examples for demonstration purpose## reference: example 1 in Zhang and Liu (2014)ntrain<-400# size of training setntest<-10000# size of testing setp0<-5# number of actual predictorsp1<-45# number of random predictorsk<-5# number of categoriesset.seed(1)n<- ntrain+ ntest; p<- p0+ p1train_idx<-seq_len(ntrain)y<-sample(k,size = n,replace =TRUE)# responsemu<-matrix(rnorm(p0* k),nrow = k,ncol = p0)# mean vector## normalize the mean vector so that they are distributed on the unit circlemu<- mu/apply(mu,1,function(a)sqrt(sum(a^2)))x0<-t(sapply(y,function(i)rnorm(p0,mean = mu[i, ],sd =0.25)))x1<-matrix(rnorm(p1* n,sd =0.3),nrow = n,ncol = p1)x<-cbind(x0, x1)train_x<- x[train_idx, ]test_x<- x[- train_idx, ]y<-factor(paste0("label_", y))train_y<- y[train_idx]test_y<- y[- train_idx]### logistic deviance loss with elastic-net penaltymodel1<-cv.abclass(train_x, train_y,nlambda =100,nfolds =5,loss ="logistic",penalty ="lasso",alpha =0.9)pred1<-predict(model1, test_x)table(test_y, pred1)## pred1## test_y label_1 label_2 label_3 label_4 label_5## label_1 1704 0 3 296 0## label_2 0 1862 0 0 106## label_3 4 11 1739 0 198## label_4 3 12 0 1947 70## label_5 0 63 30 1 1951mean(test_y== pred1)# accuracy## [1] 0.9203### with groupwise lassomodel2<-cv.abclass(train_x, train_y,nlambda =100,nfolds =5,loss ="logistic",penalty ="glasso")pred2<-predict(model2, test_x)table(test_y, pred2)## pred2## test_y label_1 label_2 label_3 label_4 label_5## label_1 1994 1 2 3 3## label_2 0 1784 0 0 184## label_3 4 2 1336 0 610## label_4 12 27 0 1963 30## label_5 0 10 2 0 2033mean(test_y== pred2)# accuracy## [1] 0.911## tuning by ET-Lasso instead of cross-validationmodel3<-et.abclass(train_x, train_y,nlambda =100,loss ="logistic",penalty ="glasso")pred3<-predict(model3, test_x)table(test_y, pred3)## pred3## test_y label_1 label_2 label_3 label_4 label_5## label_1 1991 1 5 5 1## label_2 0 1842 0 0 126## label_3 3 7 1643 0 299## label_4 7 13 0 1997 15## label_5 0 18 11 0 2016mean(test_y== pred3)# accuracy## [1] 0.9489GNU General PublicLicense (≥ 3)
Copyright holder: Eli Lilly and Company