Movatterモバイル変換


[0]ホーム

URL:


dupiR: Bayesian Inference from Count Data using Discrete Uniform Priors

We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. This package implements a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. This can be used for a variety of statistical problems involving absolute quantification under uncertainty. See Comoglio et al. (2013) <doi:10.1371/journal.pone.0074388>.

Version:1.2.1
Depends:R (≥ 2.15.1), methods
Imports:graphics,plotrix, stats, utils
Suggests:testthat (≥ 3.0.0)
Published:2024-03-21
DOI:10.32614/CRAN.package.dupiR
Author:Federico Comoglio [aut, cre], Maurizio Rinaldi [aut]
Maintainer:Federico Comoglio <federico.comoglio at gmail.com>
License:GPL-2
NeedsCompilation:no
Citation:dupiR citation info
Materials:README,NEWS
CRAN checks:dupiR results

Documentation:

Reference manual:dupiR.html ,dupiR.pdf

Downloads:

Package source: dupiR_1.2.1.tar.gz
Windows binaries: r-devel:dupiR_1.2.1.zip, r-release:dupiR_1.2.1.zip, r-oldrel:dupiR_1.2.1.zip
macOS binaries: r-release (arm64):dupiR_1.2.1.tgz, r-oldrel (arm64):dupiR_1.2.1.tgz, r-release (x86_64):dupiR_1.2.1.tgz, r-oldrel (x86_64):dupiR_1.2.1.tgz
Old sources: dupiR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=dupiRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp