Movatterモバイル変換


[0]ホーム

URL:


pblm: Bivariate Additive Marginal Regression for Categorical Responses

Bivariate additive categorical regression via penalized maximum likelihood. Under a multinomial framework, the method fits bivariate models where both responses are nominal, ordinal, or a mix of the two. Partial proportional odds models are supported, with flexible (non-)uniform association structures. Various logit types and parametrizations can be specified for both marginals and the association, including Dale’s model. The association structure can be regularized using polynomial-type penalty terms. Additive effects are modeled using P-splines. Standard methods such as summary(), residuals(), and predict() are available.

Version:0.1-12
Depends:R (≥ 4.4.0),Matrix,lattice, splines,MASS
Imports:methods
Published:2025-06-19
DOI:10.32614/CRAN.package.pblm
Author:Marco Enea [aut, cre, cph], Mikis Stasinopoulos [ctb], Robert Rigby [ctb]
Maintainer:Marco Enea <marco.enea at unipa.it>
BugReports:https://github.com/MarcoEnea/pblm/issues
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/MarcoEnea/pblm
NeedsCompilation:no
Citation:pblm citation info
CRAN checks:pblm results

Documentation:

Reference manual:pblm.html ,pblm.pdf

Downloads:

Package source: pblm_0.1-12.tar.gz
Windows binaries: r-devel:pblm_0.1-12.zip, r-release:pblm_0.1-12.zip, r-oldrel:pblm_0.1-12.zip
macOS binaries: r-release (arm64):pblm_0.1-12.tgz, r-oldrel (arm64):pblm_0.1-12.tgz, r-release (x86_64):pblm_0.1-12.tgz, r-oldrel (x86_64):pblm_0.1-12.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pblmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp