Movatterモバイル変換


[0]ホーム

URL:


KernSmoothIRT: Nonparametric Item Response Theory

Fits nonparametric item and option characteristic curves using kernel smoothing. It allows for optimal selection of the smoothing bandwidth using cross-validation and a variety of exploratory plotting tools. The kernel smoothing is based on methods described in Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.

Version:6.4
Imports:Rcpp,plotrix,rgl, methods
LinkingTo:Rcpp
Published:2020-02-17
DOI:10.32614/CRAN.package.KernSmoothIRT
Author:Angelo Mazza, Antonio Punzo, Brian McGuire
Maintainer:Brian McGuire <mcguirebc at gmail.com>
License:GPL-2
NeedsCompilation:yes
Citation:KernSmoothIRT citation info
CRAN checks:KernSmoothIRT results

Documentation:

Reference manual:KernSmoothIRT.html ,KernSmoothIRT.pdf

Downloads:

Package source: KernSmoothIRT_6.4.tar.gz
Windows binaries: r-devel:KernSmoothIRT_6.4.zip, r-release:KernSmoothIRT_6.4.zip, r-oldrel:KernSmoothIRT_6.4.zip
macOS binaries: r-release (arm64):KernSmoothIRT_6.4.tgz, r-oldrel (arm64):KernSmoothIRT_6.4.tgz, r-release (x86_64):KernSmoothIRT_6.4.tgz, r-oldrel (x86_64):KernSmoothIRT_6.4.tgz
Old sources: KernSmoothIRT archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=KernSmoothIRTto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp