Movatterモバイル変換


[0]ホーム

URL:


lgpr: Longitudinal Gaussian Process Regression

Interpretable nonparametric modeling of longitudinal data using additive Gaussian process regression. Contains functionality for inferring covariate effects and assessing covariate relevances. Models are specified using a convenient formula syntax, and can include shared, group-specific, non-stationary, heterogeneous and temporally uncertain effects. Bayesian inference for model parameters is performed using 'Stan'. The modeling approach and methods are described in detail in Timonen et al. (2021) <doi:10.1093/bioinformatics/btab021>.

Version:1.2.5
Depends:R (≥ 3.4.0), methods
Imports:Rcpp (≥ 0.12.0),RcppParallel (≥ 5.0.2),RCurl (≥ 1.98),rstan (≥ 2.26.0),rstantools (≥ 2.3.1),bayesplot (≥ 1.7.0),MASS (≥ 7.3-50), stats (≥ 3.4),ggplot2 (≥ 3.1.0),gridExtra (≥ 0.3.0)
LinkingTo:BH (≥ 1.75.0-0),Rcpp (≥ 1.0.6),RcppEigen (≥ 0.3.3.9.1),RcppParallel (≥ 5.0.2),rstan (≥ 2.26.0),StanHeaders (≥2.26.0)
Suggests:knitr,rmarkdown,testthat,covr
Published:2025-10-30
DOI:10.32614/CRAN.package.lgpr
Author:Juho TimonenORCID iD [aut, cre], Andrew Johnson [ctb]
Maintainer:Juho Timonen <juho.timonen at iki.fi>
BugReports:https://github.com/jtimonen/lgpr/issues
License:GPL (≥ 3)
URL:https://github.com/jtimonen/lgpr
NeedsCompilation:yes
SystemRequirements:GNU make
Citation:lgpr citation info
Materials:README
CRAN checks:lgpr results

Documentation:

Reference manual:lgpr.html ,lgpr.pdf
Vignettes:Mathematical description of lgpr models (source,R code)

Downloads:

Package source: lgpr_1.2.5.tar.gz
Windows binaries: r-devel:lgpr_1.2.5.zip, r-release:lgpr_1.2.5.zip, r-oldrel:lgpr_1.2.5.zip
macOS binaries: r-release (arm64):lgpr_1.2.5.tgz, r-oldrel (arm64):lgpr_1.2.5.tgz, r-release (x86_64):lgpr_1.2.5.tgz, r-oldrel (x86_64):lgpr_1.2.5.tgz
Old sources: lgpr archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=lgprto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp