Movatterモバイル変換


[0]ホーム

URL:


JMH: Joint Model of Heterogeneous Repeated Measures and Survival Data

Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and longitudinal data in the presence of heterogeneous within-subject variability, proposed by Li and colleagues (2023) <doi:10.48550/arXiv.2301.06584>. The proposed method models the within-subject variability of the biomarker and associates it with the risk of the competing risks event. The time-to-event data is modeled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modeled using a mixed-effects location and scale model. The association is captured by shared random effects. The model is estimated using an Expectation Maximization algorithm.

Version:1.0.3
Depends:R (≥ 3.5.0),survival,nlme, utils,MASS,statmod
Imports:Rcpp (≥ 1.0.7), parallel,dplyr, stats,caret,timeROC
LinkingTo:Rcpp,RcppEigen
Suggests:testthat (≥ 3.0.0),spelling
Published:2024-02-20
DOI:10.32614/CRAN.package.JMH
Author:Shanpeng Li [aut, cre], Jin Zhou [ctb], Hua Zhou [ctb], Gang Li [ctb]
Maintainer:Shanpeng Li <lishanpeng0913 at ucla.edu>
License:GPL (≥ 3)
NeedsCompilation:yes
Language:en-US
Materials:README
CRAN checks:JMH results

Documentation:

Reference manual:JMH.html ,JMH.pdf

Downloads:

Package source: JMH_1.0.3.tar.gz
Windows binaries: r-devel:JMH_1.0.3.zip, r-release:JMH_1.0.3.zip, r-oldrel:JMH_1.0.3.zip
macOS binaries: r-release (arm64):JMH_1.0.3.tgz, r-oldrel (arm64):JMH_1.0.3.tgz, r-release (x86_64):JMH_1.0.3.tgz, r-oldrel (x86_64):JMH_1.0.3.tgz
Old sources: JMH archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=JMHto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp