Movatterモバイル変換


[0]ホーム

URL:


SMMAL: Semi-Supervised Estimation of Average Treatment Effects

Provides a pipeline for estimating the average treatment effect via semi-supervised learning. Outcome regression is fit with cross-fitting using various machine learning method or user customized function. Doubly robust ATE estimation leverages both labeled and unlabeled data under a semi-supervised missing-data framework. For more details see Hou et al. (2021) <doi:10.48550/arxiv.2110.12336>. A detailed vignette is included.

Version:0.0.5
Depends:R (≥ 3.5.0)
Imports:glmnet,randomForest,splines2,xgboost, stats, utils
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-08-28
DOI:10.32614/CRAN.package.SMMAL
Author:Jue Hou [aut, cre], Yuming Zhang [aut], Shuheng Kong [aut]
Maintainer:Jue Hou <hou00123 at umn.edu>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:README
CRAN checks:SMMAL results

Documentation:

Reference manual:SMMAL.html ,SMMAL.pdf
Vignettes:SMMAL_vignette (source,R code)

Downloads:

Package source: SMMAL_0.0.5.tar.gz
Windows binaries: r-devel:SMMAL_0.0.5.zip, r-release:SMMAL_0.0.5.zip, r-oldrel:SMMAL_0.0.5.zip
macOS binaries: r-release (arm64):SMMAL_0.0.5.tgz, r-oldrel (arm64):SMMAL_0.0.5.tgz, r-release (x86_64):SMMAL_0.0.5.tgz, r-oldrel (x86_64):SMMAL_0.0.5.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SMMALto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp