Movatterモバイル変換


[0]ホーム

URL:


scutr: Balancing Multiclass Datasets for Classification Tasks

Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.

Version:0.2.0
Depends:R (≥ 2.10)
Imports:smotefamily, parallel,mclust
Suggests:testthat (≥ 2.0.0)
Published:2023-11-17
DOI:10.32614/CRAN.package.scutr
Author:Keenan Ganz [aut, cre]
Maintainer:Keenan Ganz <ganzkeenan1 at gmail.com>
BugReports:https://github.com/s-kganz/scutr/issues
License:MIT + fileLICENSE
URL:https://github.com/s-kganz/scutr
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:scutr results

Documentation:

Reference manual:scutr.html ,scutr.pdf

Downloads:

Package source: scutr_0.2.0.tar.gz
Windows binaries: r-devel:scutr_0.2.0.zip, r-release:scutr_0.2.0.zip, r-oldrel:scutr_0.2.0.zip
macOS binaries: r-release (arm64):scutr_0.2.0.tgz, r-oldrel (arm64):scutr_0.2.0.tgz, r-release (x86_64):scutr_0.2.0.tgz, r-oldrel (x86_64):scutr_0.2.0.tgz
Old sources: scutr archive

Reverse dependencies:

Reverse imports:MantaID

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=scutrto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp