Movatterモバイル変換


[0]ホーム

URL:


lsm: Estimation of the log Likelihood of the Saturated Model

When the values of the outcome variable Y are either 0 or 1, the function lsm() calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. The function LogLik() works (almost perfectly) when the number of independent variables K is high, but for small K it calculates wrong values in some cases. For this reason, when Y is dichotomous and the data are grouped in J populations, it is recommended to use the function lsm() because it works very well for all K.

Version:0.2.1.5
Depends:R (≥ 3.5.0)
Imports:stats,dplyr (≥ 1.0.0),ggplot2 (≥ 1.0.0)
Published:2025-06-02
DOI:10.32614/CRAN.package.lsm
Author:Jorge VillalbaORCID iD [aut, cre], Humberto LlinasORCID iD [aut], Omar FabregasORCID iD [aut]
Maintainer:Jorge Villalba <jvillalba at utb.edu.co>
License:MIT + fileLICENSE
NeedsCompilation:no
Citation:lsm citation info
Materials:README
CRAN checks:lsm results

Documentation:

Reference manual:lsm.html ,lsm.pdf

Downloads:

Package source: lsm_0.2.1.5.tar.gz
Windows binaries: r-devel:lsm_0.2.1.5.zip, r-release:lsm_0.2.1.5.zip, r-oldrel:lsm_0.2.1.5.zip
macOS binaries: r-release (arm64):lsm_0.2.1.5.tgz, r-oldrel (arm64):lsm_0.2.1.5.tgz, r-release (x86_64):lsm_0.2.1.5.tgz, r-oldrel (x86_64):lsm_0.2.1.5.tgz
Old sources: lsm archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=lsmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp