Movatterモバイル変換


[0]ホーム

URL:


mixedCCA: Sparse Canonical Correlation Analysis for High-Dimensional MixedData

Semi-parametric approach for sparse canonical correlation analysis which can handle mixed data types: continuous, binary and truncated continuous. Bridge functions are provided to connect Kendall's tau to latent correlation under the Gaussian copula model. The methods are described in Yoon, Carroll and Gaynanova (2020) <doi:10.1093/biomet/asaa007> and Yoon, Mueller and Gaynanova (2021) <doi:10.1080/10618600.2021.1882468>.

Version:1.6.3
Depends:R (≥ 3.0.1), stats,MASS
Imports:Rcpp,pcaPP,Matrix,fMultivar,mnormt,irlba,latentcor (≥2.0.1)
LinkingTo:Rcpp,RcppArmadillo
Published:2025-11-18
DOI:10.32614/CRAN.package.mixedCCA
Author:Grace YoonORCID iD [aut], Mingze HuangORCID iD [ctb], Irina GaynanovaORCID iD [aut, cre]
Maintainer:Irina Gaynanova <irinagn at umich.edu>
License:GPL-3
NeedsCompilation:yes
Materials:README
CRAN checks:mixedCCA results

Documentation:

Reference manual:mixedCCA.html ,mixedCCA.pdf

Downloads:

Package source: mixedCCA_1.6.3.tar.gz
Windows binaries: r-devel:mixedCCA_1.6.3.zip, r-release:mixedCCA_1.6.3.zip, r-oldrel:mixedCCA_1.6.3.zip
macOS binaries: r-release (arm64):mixedCCA_1.6.3.tgz, r-oldrel (arm64):mixedCCA_1.6.3.tgz, r-release (x86_64):mixedCCA_1.6.3.tgz, r-oldrel (x86_64):mixedCCA_1.6.3.tgz
Old sources: mixedCCA archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mixedCCAto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp